Mark scheme – Physical Quantities

Q	Question		Answer/Indicative content	Marks	Guidance
1	uestic		Line of best fit drawn through the data points Gradient = 38 (Ckln2 = gradient)	B1 C1 C1	Allow ± 2. Not calculated through use of a single point. Possible ECF from incorrect gradient Note: gradient of 40 gives 4.8 × 10 ⁴ and gradient of 36 gives 4.3 × 10 ⁴ Examiner's Comments This question is likely to be an unfamiliar scenario to many candidates and so required some careful reading. The first mark is for a single straight line of best fit; many
			$1.2 \times 10^{-3} \times k \times \ln 2 = 38$ $k = 4.6 \times 10^{4} (\Omega \text{m}^{-1})$	A1	candidates simply joined up the first and last point, which produced a line that did not produce an even distribution of points above and below. The gradient calculation was well done by most candidates, leading to a value within the tolerance. Although the given equation is likely to be unknown, most candidates were able to appreciate how to determine the value of <i>k</i> and did so successfully. Over half of the candidates were able to achieve full marks on this question.
			Total	4	
2	а	i	I = (v/4)(1/f) - k Correct comparison with $y = mx + c$	M1 A1	Correct manipulation of equation must be shown
			large triangle used to determine gradient	B1	$\Delta x > 0.6 \times 10^{-3} \text{s}$
		ii	gradient calculated correctly $v = 320 \text{ (m s}^{-1})$	B1 B1	Expect between 80 and 82 (m s ⁻¹) Allow 320 ± 20; allow ECF from an incorrect gradient
	b	i	Value of 1/F determined correctly from graph F = 350 (Hz)	C1	Allow values between 2.83 x 10 ⁻³ s and 2.84 x 10 ⁻³ s Allow only alternative methods which use
			F = 350 (HZ)	A1	values from line of best fit
		ii	$(100 (\Delta F/F) =) 100 \Delta v/v$	B1	
		"	$+ \frac{100 (\Delta l + \Delta k)}{(l+k)}$	B1	

			Total	9	
3	а		At $t = 0$ (and $t = 15, 30$) the (magnitude of the) centripetal force equals $R - W$ (as only vertical forces act on the tourist)	B1	Allow at <i>t</i> = 0 (or the bottom of the circle) the centripetal force is provided by the resultant/ upwards/vertical force
			(For circular motion) there must (always) be a resultant force towards the centre		any 2 from 3 marking points
	b	i	The resultant force is not always vertical/sometimes has a horizontal component	B1 x 2	
			This can only be provided by friction/cannot be provided by <i>R</i> and W / <i>R</i> and W are always vertical/only <i>F</i> is horizontal		Allow F provides the horizontal (component of the) centripetal force
		lii	Sine wave with period 30 min and amplitude 0.050 (N)	B1	Must start at the origin
			Correct phase, i.e. <u>negative</u> sine wave	B1	
		iii	F = 0.050 cos 40°	C1	Allow alternative methods e.g. triangle of forces
			F = 0.038 (N)	A1	Allow ECF from graph if used
			m = 650/g or m = 650/9.81 (= 66.3 kg)	C1	Not <i>m</i> = 650 kg or <i>m</i> = 65 kg
	С		$(F = mr\omega^2 \text{ gives})$ $d = 0.050 / m\omega^2 = 0.050 / 66.3 \times (3.5 \times 10^{-3})^2$	C1	or $(F = mv^2/r \text{ and } v = 2\Pi r/T \text{ gives})$ $d = 0.050 \times (30 \times 60)^2 / (4\pi^2 \times 66.3)$
			d = 62 (m)	A1	u = 0.050 x (50 x 60) - / (411 - x 66.5)
			Total	10	
			GPE = (-) G <i>Mm/r</i>	C1	
	а		ODE () 0.07 ·· 40-11 ·· 0 ·· 4030 ·· 040/4 5 ·· 4011	C1	Mark is for full substitution, including 6.67×10^{-11} for G
4	а	i	GPE = $(-)$ 6.67 × 10 ⁻¹¹ × 2 × 10 ³⁰ × 810/1.5 × 10 ¹¹	C1	10 ⁻¹¹ for G
4	а	i	GPE = (-) $6.67 \times 10^{-11} \times 2 \times 10^{-11} \times 81071.5 \times 10^{-11}$ GPE = (-) 7.2×10^{11} (J)	C1 A0	10 ⁻¹¹ for G
4	а	i	. ,		Allow proof by algebraic method for full marks e.g. $mv^2/r = GMm/r^2$
4	а	i	GPE = (-) 7.2×10^{11} (J) $v = 2\Pi r/T = 2\Pi \times 1.5 \times 10^{11} / 3.16 \times 10^{7} (= 29.8 \text{ km})$	A0	Allow proof by algebraic method for full
4	а		GPE = (-) 7.2×10^{11} (J) $v = 2\Pi r/T = 2\Pi \times 1.5 \times 10^{11} / 3.16 \times 10^{7} (= 29.8 \text{ km s}^{-1})$	A0 C1	Allow proof by algebraic method for full marks e.g. $mv^2/r = GMm/r^2$
4	а		GPE = (-) 7.2×10^{11} (J) $v = 2\Pi r/T = 2\Pi \times 1.5 \times 10^{11} / 3.16 \times 10^{7} (= 29.8 \text{ km s}^{-1})$ $KE = \frac{1}{2}mv^{2} = 0.5 \times 810 \times (29.8 \times 10^{3})^{2}$	A0 C1 M1	Allow proof by algebraic method for full marks e.g. $mv^2/r = GMm/r^2$ so $mv^2 = GMm/r$
4	а	ii	GPE = (-) 7.2×10^{11} (J) $v = 2\Pi r/T = 2\Pi \times 1.5 \times 10^{11} / 3.16 \times 10^{7} (= 29.8 \text{ km s}^{-1})$ $KE = \frac{1}{2}mv^{2} = 0.5 \times 810 \times (29.8 \times 10^{3})^{2}$ $KE = 3.6 \times 10^{11} \text{ (J)}$	A0 C1 M1 A1	Allow proof by algebraic method for full marks e.g. $mv^2/r = GMm/r^2$ so $mv^2 = GMm/r$ Therefore KE/GPE = $\frac{1}{2}mv^2/(GMm/r) = \frac{1}{2}$
4	а	ii	GPE = (-) 7.2×10^{11} (J) $v = 2\Pi r/T = 2\Pi \times 1.5 \times 10^{11} / 3.16 \times 10^{7} (= 29.8 \text{ km s}^{-1})$ $KE = \frac{1}{2}mv^{2} = 0.5 \times 810 \times (29.8 \times 10^{3})^{2}$ $KE = 3.6 \times 10^{11} \text{ (J)}$ $total \text{ energy} = (-) (7.2 \times 10^{11} - 3.6 \times 10^{11})$	A0 C1 M1 A1 M1	Allow proof by algebraic method for full marks e.g. $mv^2/r = GMm/r^2$ so $mv^2 = GMm/r$ Therefore KE/GPE = $\frac{1}{2}mv^2/(GMm/r) = \frac{1}{2}$ working must be shown; ECF (i) and (ii) Mark is for correct calculation of A (in Bq or
4	b	ii	GPE = (-) 7.2×10^{11} (J) $v = 2\Pi r/T = 2\Pi \times 1.5 \times 10^{11} / 3.16 \times 10^{7} (= 29.8 \text{ km s}^{-1})$ $KE = \frac{1}{2}mv^{2} = 0.5 \times 810 \times (29.8 \times 10^{3})^{2}$ $KE = 3.6 \times 10^{11} \text{ (J)}$ $total \text{ energy} = (-) (7.2 \times 10^{11} - 3.6 \times 10^{11})$ $total \text{ energy} = (-) 3.6 \times 10^{11} \text{ (J)}$	A0 C1 M1 A1 M1 A0	Allow proof by algebraic method for full marks e.g. $mv^2/r = GMm/r^2$ so $mv^2 = GMm/r$ Therefore KE/GPE = $\frac{1}{2}mv^2/(GMm/r) = \frac{1}{2}$ working must be shown; ECF (i) and (ii) Mark is for correct calculation of A (in Bq or decays per s)
4		ii	GPE = (-) 7.2×10^{11} (J) $v = 2\Pi r/T = 2\Pi \times 1.5 \times 10^{11} / 3.16 \times 10^{7} \text{ (= 29.8 km s}^{-1)}$ $KE = \frac{1}{2}mv^{2} = 0.5 \times 810 \times (29.8 \times 10^{3})^{2}$ $KE = 3.6 \times 10^{11} \text{ (J)}$ $total \text{ energy = (-) } (7.2 \times 10^{11} - 3.6 \times 10^{11})$ $total \text{ energy = (-) } 3.6 \times 10^{11} \text{ (J)}$ $\underline{A} = 470/8.8 \times 10^{-13} = 5.3 \times 10^{14} \text{ (Bq)}$	A0 C1 M1 A1 M1 A0 C1	Allow proof by algebraic method for full marks e.g. $mv^2/r = GMm/r^2$ so $mv^2 = GMm/r$ Therefore KE/GPE = $\frac{1}{2}mv^2/(GMm/r) = \frac{1}{2}$ working must be shown; ECF (i) and (ii) Mark is for correct calculation of A (in Bq or
4		ii	GPE = (-) 7.2×10^{11} (J) $v = 2\Pi r/T = 2\Pi \times 1.5 \times 10^{11} / 3.16 \times 10^{7} (= 29.8 \text{ km s}^{-1})$ $KE = \frac{1}{2}mv^{2} = 0.5 \times 810 \times (29.8 \times 10^{3})^{2}$ $KE = 3.6 \times 10^{11} \text{ (J)}$ $total \text{ energy} = (-) (7.2 \times 10^{11} - 3.6 \times 10^{11})$ $total \text{ energy} = (-) 3.6 \times 10^{11} \text{ (J)}$ $A = 470/8.8 \times 10^{-13} = 5.3 \times 10^{14} \text{ (Bq)}$ $\lambda = \ln \frac{2}{88} \times 3.16 \times 10^{7} \text{ (= 2.5 \times 10^{-10} s}^{-1})$	A0 C1 M1 A1 M1 A0 C1 C1	Allow proof by algebraic method for full marks e.g. $mv^2/r = GMm/r^2$ so $mv^2 = GMm/r$ Therefore KE/GPE = $\frac{1}{2}mv^2/(GMm/r) = \frac{1}{2}$ working must be shown; ECF (i) and (ii) Mark is for correct calculation of A (in Bq or decays per s)

	P = 470 exp (- In 2 x 100 / 88)	C1	Allow calculation in terms of N or A; allow
	P = 210 (W)	A1	ECF for N or A
	Total	12	
5	Level 3 (5 - 6 marks) Clear explanation using kinetic theory ideas and either a clear proof using formulae or a correct calculation There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3 - 4 marks) A partial explanation using kinetic theory ideas and either a partial proof using formulae or a partial calculation There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1 - 2 marks) An attempt at either explanation or proof or calculation There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit.	B1 x 6	Indicative scientific points may include: Explanation using kinetic theory • pressure = force/area • force is caused by air molecules colliding with oven walls • Newton's 2 nd Law states force = rate of momentum change • increased temperature means each molecule has greater KE • hence greater velocity and hence greater momentum • and more collisions with walls per second • hence greater rate of momentum change on hitting walls. • This would lead to greater pressure if N remained constant • so number of molecules in oven must decrease (air escapes) • so fewer but 'harder' collisions at higher temperatures giving constant pressure. • Rms velocity c increases with temperature but number N decreases and so effects balance out to keep total KE (½Nmc²) constant Proof using formulae • equate pV = NkT and E = ³ / ₂ NkT to show E = ³ / ₂ pV • in an ideal gas, all internal energy E is kinetic energy • so E is independent of temperature Calculation • Internal energy = ³ / ₂ pV = 1.5 x 0.065 x 1.0 x 10 ⁵ = 9.8 kJ • At T = 293K, N = pV/kT = 1.6 x 10 ²⁴ and n = 2.7 moles • At T = 473K, N = 1.0 x 10 ²⁴ and n = 1.7 moles

					so we can show that NT (and/or nT) remain constant
			Total	6	
6	а	i	$(F = ma =) 190 \times 10^3 = 2.1 \times 10^5 a$	M1	a = 0.905 to 3 SF
			a = 0.90 (m s ⁻²)	A0	
		ii	$(v^2 = u^2 + 2as \text{ gives}) 36 = 2 \times 0.90 \times s$	C1	Allow any valid suvat approach; allow ECF from (i)
			s = 20 (m)	A1	Note using a = 1 gives s = 18(m)
			1 P = Fv		Equation must be seen (not inferred from working)
			One correct calculation	B1	Allow any corresponding values of F and v;
			One correct calculation e.g. F = 100×10^3 and v = 42 gives $P = 4.2 \times 10^6$ (W)	B1	working must be shown. No credit for finding area below curve
		iii	Fv = constant	B1	Allow <i>F</i> is proportional to 1/v or graph is
			2 $(P = VI = 4.2MW \text{ so}) 4.2 \times 10^6 = 25 \times 10^3 \times I$	C1	hyperbolic <i>or</i> correct calculation of <i>Fv</i> at <u>two</u> points (or more)
			I = 170 (A)	A1	Allow P = 4MW or ECF from (iii)1
					Expect answers between 160 - 170 (A)
	b	i	R (= $\rho L/A$) = 1.8 × 10 ⁻⁸ × 1500/1.1 × 10 ⁻⁴	C1	
			R = 0.25 (Ω)	A1	
			$E = \sigma/\varepsilon = T/A\varepsilon$ (so $T = EA\varepsilon$)	C1	or calculation of σ =1.56 x 10 ⁸ (Nm ⁻²)
		ii	$T = 1.2 \times 10^{10} \times 1.1 \times 10^{-4} \times 0.013$	C1	or T = 1.56 x 10 ⁸ x 1.1 x 10 ⁻⁴
			T = 1.7 x 104 (N) or 17 (kN)	A1	
			Total	13	
		i R = 3000 + 1500 V = 12 × 1500/4500 = 4(.0) (V)	R = 3000 + 1500	C1	$R = 4500 (\Omega)$
7			V = 12 × 1500/4500 = 4(.0) (V)	A1	or I = V/R = 12 /4500 = 2.67 mA
					$V_{1500} = 2.67 \text{ mA x } 1.5 \text{ k}\Omega = 4.0 \text{ (V)}$
		ii	V (= 12 × 1500/1600) = 11.25 (V)	C1	
			ΔV = 11.25 – 4.0 = 7.25 (V)	A0	
			Total	3	
8		i	$E = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{490 \times 10^{-9}}$	C1	
			energy = $4.1 \times 10^{-19} (J)$	A1	Note answer to 3 SF is 4.06 × 10 ⁻¹⁹

	::	(number of photons =) $\frac{0.230}{4.06 \times 10^{-19}}$	C1	Possible ECF from (b)(i)
	ii	number of photons = 5.7×10^{17}	A1	Note answer is 5.6×10^{17} when 4.1×10^{-19} is used
		Total	4	
9		D	1	
		Total	1	
10		$h \rightarrow J s / h \rightarrow N m s / J \rightarrow kg m^2 s^{-2}$	C1	
		base unit = kg m ² s ⁻¹	A1	
		Total	2	
				Allow 2 – 16 (mm)
		sensible diameter, e.g. 7 (mm)	C1	Not π <i>d</i> ² ; this is XP
11	i	(power = $4.8 \times 10^{-7} \times \pi \times (0.0035)^2$)		Note check for AE (condone rounding error here)
		power = 1.8×10^{-11} (W)	A1	Possible ECF for diameter outside the range 2 – 16 (mm) Allow 1 SF answer here
	ii	$(I \propto A^2; \text{ intensity doubles})$ $A = \sqrt{2} \times 7.8$ (or equivalent) A = 11 (nm)	C1 A1	Allow the C1 mark for 4.8 (× 10^{-7}) = $k \times [7.8 \times (10^{-9})]^2$
		Total	4	
12		С	1	
		Total	1	
				Allow use of 10 for g (since estimate)
13		(Mass of adult =) 50 kg to 150 kg or W = 500N to 1500 N $Area = \frac{weight}{2.3 \times 10^n}$	B1 C1	Allow ECF for incorrect weight Ignore POT Allow one significant figure
		Area = $\frac{1}{3} \times \frac{\text{weight}}{2.3 \times 10^6}$ = value for area (m ²)	A1	Examiner's Comments A good proportion of the candidates scored full marks on this question. Some candidates found the total area rather than the area of one leg. A few candidates assumed that the stool had four legs.

				This question required candidates to estimate the mass or weight of an adult. In general, in this type of question a more generous mass is sensible. Candidates who did well on this question started by stating the mass (or weight) of an adult. Examiners allowed a mass between 50 kg and 150 kg. Candidates then often worked out the total area before working out the area of one of the legs. Some candidates did not correctly understand that 2.3 MPa was equal to 2.3 × 10 ⁶ Pa. Some candidates incorrectly divided the stress by three. Exemplar 4 Estimate the minimum cross-sectional area A of one leg. Str c 55 For C Area (A) 1 588. C Area
				AfL
				Candidates should be encouraged to practise making estimates of physical quantities.
		Total	3	
14		D	1	
		Total	1	
15		С	1	
		Total	1	
16		(1 C =) (1) A s	C1	Allow alternative methods
		$(1 \text{ J} =) (1) \text{ kg m s}^{-2} \times \text{m or } (1) \text{ N} = (1) \text{ kg m s}^{-2}$	C1	
		$V = \text{kg ms}^{-2} \times \text{m} = \text{kgm}^2 \text{s}^{-2}$	M1	Note this mark is for clear substitution and working
		$V = \frac{\text{kg ms}^{-2} \times \text{m}}{\text{As}} = \frac{\text{kgm}^2 \text{s}^{-2}}{\text{As}}$ $\text{kg m}^2 \text{A}^{-1} \text{s}^{-3}$	A0	Examiner's Comments
				Some candidates were not clear on what was

				meant by base units. Most realised that the quantity of electric charge is measured in As. Weaker candidates had difficulty deriving work done.
		Total	3	
17	i	Similarity – same unit (AW)	B1	Allow 'both defined as energy (transformed) per unit charge' or 'both defined as work done per unit charge' Allow any pair from:
	i	Difference – For e.m.f, energy is transformed from chemical / other forms to electrical and for p.d., energy is transformed to heat / other forms from electrical	B1	e.m.f. p.d. Energy (transformed) to electrical or Energy (transformed) to heat /other forms Charges gain energy Work done on charges Examiner's Comments Most candidates knew that e.m.f. and p.d. were both measured in volts (V). A small number of candidates thought that 'volt' was the same as 'voltage'. This question benefitted those who taken time to revise thoroughly. The modal mark was one, but a significant number of candidates answers.
	ii	$n = \frac{9.6 \times 10^{16}}{1.2 \times 10^{-6} \times 6.0 \times 10^{-3}} \text{or} n = 1.3(3) \times 10^{25} \text{ (m}^{-3)}$ $(I = Anev)$	C1	
	ii	$0.003 = 1.2 \times 10^{-6} \times 1.33 \times 10^{25} \times 1.6 \times 10^{-19} \times V$	C1	Note Any subject for this equation
	ii	$v = 1.2 \times 10^{-3} \text{ (m s}^{-1}\text{)}$	A1	Allow 1 mark for $1.6(3) \times 10^5$ (m s ⁻¹); $n = 9.6 \times 10^{16}$ used Examiner's Comments Almost all candidates were familiar with the equation $I = Anev$. However, only the top-end candidates realised that the number density of the charge carriers (electrons) had to be calculated from the number of electrons given and the volume of the resistor. The majority of candidates incorrectly assumed n to be 9.6×10^{16} m ⁻³ when it should have been 1.3×10^{25} m ⁻³ . Examiners awarded one mark for those

				candidates who arrived at the answer 1.6 × 10^5 m s ⁻¹ using the incorrect value of n .
		Total	5	
18	а	energy input = $mc\Delta\theta$ = 0.327 × 4200 × 80 = 110 kJ	C1 M1	Allow 0.3 kg in the calculation
		energy input = power × time	C1	
		time = 220 (s)	A0	
	b	Thermal losses to kettle and surroundings	B1	
		Lagging the kettle	B1	
		Cover to prevent evaporation	B1	
		Total	6	